Sequence Alignment for RGB-D and Motion Capture Skeletons
نویسندگان
چکیده
RGB-D skeletons are nowadays commonly used e.g. for gesture recognition, and so their accuracy and stability have significant influence on further processing. Skeletons obtained with motion capture are considerably more accurate and can be used to assess the quality of RGB-D skeleton extraction algorithms. In this paper, we record motion sequences with both a Kinect RGB-D sensor and a full motion capture system and align the generated skeletons by subsequence dynamic time warping with a varied step size. To evaluate the alignment, we propose two measures: the minimum overall distance between feature vectors and the distance of transformed skeletons. Experimental results show that our proposed method provides a better alignment between skeletons than the comparison methods. The proposed technique can also be used for content-based retrieval from large motion capture databases.
منابع مشابه
Capture de mouvements humains par capteurs RGB-D. (Capture human motions by RGB-D sensor )
Simultaneous apparition of depth and color sensors and super-realtime skeleton detection algorithms led to a surge of new research in Human Motion Capture. This feature is a key part of Human-Machine Interaction. But the applicative context of those new technologies is voluntary, fronto-parallel interaction with the sensor, which allowed the designers certain approximations and requires a speci...
متن کاملClassification of RGB-D and Motion Capture Sequences Using Extreme Learning Machine
In this paper we present a robust motion recognition framework for both motion capture and RGB-D sensor data. We extract four different types of features and apply a temporal difference operation to form the final feature vector for each frame in the motion sequences. The frames are classified with the extreme learning machine, and the final class of an action is obtained by majority voting. We...
متن کاملTemporally Consistent Motion Segmentation from RGB-D Video
We present a method for temporally consistent motion segmentation from RGB-D videos assuming a piecewise rigid motion model. We formulate global energies over entire RGB-D sequences in terms of the segmentation of each frame into a number of objects, and the rigid motion of each object through the sequence. We develop a novel initialization procedure that clusters feature tracks obtained from t...
متن کاملRGB-D-based Human Motion Recognition with Deep Learning: A Survey
Human motion recognition is one of the most important branches of human-centered research activities. In recent years, motion recognition based on RGB-D data has attracted much attention. Along with the development in artificial intelligence, deep learning techniques have gained remarkable success in computer vision. In particular, convolutional neural networks (CNN) have achieved great success...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013